If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+3x-4899=0
a = 2; b = 3; c = -4899;
Δ = b2-4ac
Δ = 32-4·2·(-4899)
Δ = 39201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{39201}}{2*2}=\frac{-3-\sqrt{39201}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{39201}}{2*2}=\frac{-3+\sqrt{39201}}{4} $
| 2(x^2-5500x-360000)=0 | | -4(a+4)+5a=-28-2a | | 3(2x-4)-(3x-5)=-10 | | x^2-5500x-360000=0 | | 1/2(8x-12+10=2x+11 | | 6n+8(3n+7)=-184 | | 0.7/x=0.5 | | -21.4=v/6-2.2 | | 0.36x+130=0.68(x+130) | | 7X-2=26+3x | | 48.u=6 | | -355=-7(5+5b)-5b | | 1000(9x-10)=50(816+100x | | 90-(x+10)-2x=x | | x+16=12(4x+16 | | 180-(2x+45)=x | | x+2x=9+2x+14=180 | | 90-5x=(x+54) | | (3x-25)+(2x+15)(3x-20)=(6x+30)(x+20)-167x | | f/5+10=8 | | 5/2y+7/2=2/3y+5 | | 1000(6x-10)=40(315+100x | | (2x+45)x=180 | | 5/2y+31/2=2/3y+5 | | 6x-12=114 | | x÷2=x÷3-12 | | 543354543x+31232123=676776x-323 | | 11x+0009=456 | | 2y−8=3y | | 4/5p=7 | | 4x+3=7-7 | | 1-6b+5=-6 |